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In this note we present the Helmholtz spacing for a pair of thin rectangular coils of arbitrary aspect ratio,

and consider how best to use such coils to compensate for Earth’s magnetic field along the coils’ Cartesian

symmetry axes. Such coils are frequently used in conjunction with charged-particle beam machines. The

Helmholtz spacing varies non-monotonically between that for square coils and that for four optimally-spaced

infinite wires. We consider other coil spacings that extend the length over which the field varies by less than

some tolerance along the Cartesian symmetry axes. The calculations also provide a convenient means by which

to evaluate when the length of the coils is sufficiently long to be considered infinite at the center point within a

fixed tolerance.

A variety of “table-top” apparatus used in physics comprise

a source of charged particles, an experimental target chamber,

and a beam-transport line connecting the two. To minimize

deflection of the charged particle beam by magnetic fields

from the earth and other sources, the “beamline” should, if

possible, be aligned with the horizontal component of the lo-

cal field. The vertical component can then be minimized by

one or more current-carrying coils surrounding the entire ap-

paratus. The most common arrangement for doing this in-

volves a pair of circular coils of radius r which are separated

along their mutual normal axis by r. This “Helmholtz” separa-

tion, SH , results in a field along the normal axis which has no

second spatial derivative along that axis midway between the

coils. The first derivative is zero by virtue of symmetry, and

this leads to an extended region of relatively uniform field.

In some experimental arrangements in which the distance

between the charged particle source and the experimental

chamber is comparable to or larger than the target chamber,

a pair of rectangular coils may prove to be the best option for

“zeroing out” the vertical component of the field both along

the beamline and in the target volume. The general topic of

the field produced by two rectangular coils has been taken up

by a number of authors[1–3] but, to our knowledge, no one

has discussed systematically the analog of SH for a set of rect-

angle coils of arbitrary dimensions. We use the same criteria

of a null second spatial derivative as the characteristic which

defines the Helmholtz spacing. In this note, we identify such

a spacing, and also consider other spacings which extend the

length of the uniform field, within a tolerance, T , along the

three Cartesian symmetry axes of the coils.

The rectangular coil layout we consider is shown in Fig. 1.

The origin of the indicated Cartesian coordinate system is

placed at the center of the rectangular volume defined by the

coils. The current flowing through either coil rotates such that
~B(x = y = z = 0) = −Boy ŷ, where Boy is positive. We con-

sider our coils to be ideally thin, meaning the current has

no spatial extent outside the line along which it is carried.

The expression for the field is obtained using the Biot-Savart

Law, and has been published previously[2]. This expression is

differentiated twice with respect to the y-coordinate, and the

Helmholtz separation is determined numerically.
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FIG. 1. Rectangular coils and their coordinate system. Throughout

this paper, we will assume that the width W remains fixed, and alter

the length L to obtain different rectangle aspect ratios, R≡ L/W . The

spacing between the coils is S.
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FIG. 2. The Helmholtz separation, SH , as a function of the aspect

ratio R. The same set of spacings is shown in terms of two units rep-

resented by the two labeled curves. The solid line shows the spacing

in units of the fixed W , while the dashed line shows the spacing in

units of L, which varies with R. The dotted line indicates SH for a set

of four infinite wires with x-spacing W .

Fig. 2 shows how SH varies with R = L/W . For R = 1,

the spacing is equal to the well-known Helmholtz spacing

for a square coil pair[4]: SH/W = 0.54. As R increases to

infinity, SH/W has an asymptotic limit equal to 1/
√

3, cor-

responding to four straight infinite wires at[4] x = ±W/2;

y =±W/(2
√

3).
The functional form of the two curves in Fig. 2 can be un-

derstood qualitatively from simple magnetostatic considera-

tions. We focus on the SH/W curve; the SH/L curve can

be understood in similar fashion. Our analysis considers the

functional shape of By along the y-axis; see Fig. 3 that consid-
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ers the simple case of R = 1 which results in SH/W = 0.54.

When S < SH the field can be described as having a rela-

tively sharp peak at the origin. When S = SH , the Helmholtz

condition is met and the curve thus has a relatively broad

“plateaued” peak. When S > SH a local minimum, symmetri-

cally centered between two maxima, develops.

Now at R=∞ and S= SH , the field shape is plateaued and is

due entirely to the four wires parallel to the z-axis, the L sides

of the rectangle. As these wires are shortened and R retreats

from infinity, the four wire segments parallel to the x-axis be-

gin to contribute to By at the origin, causing its functional form

to develop a peak there. In order to restore the plateau shape

associated with the Helmholtz condition, the y-spacing of the

z-segments must be increased beyond its asymptotic value so

that their (now) two-peaked contribution will serve to com-

pensate the increasingly important end-segment contribution

near the origin. Thus as R decreases from infinity, SH must

increase, meaning there must be a negative slope in the near-

asymptotic region of R.

At the opposite extreme, as L approaches zero, the geome-

try is the same as that for the large-R case, but is rotated about

the y-axis by 90◦. That is, when approaching zero, L plays

the role that W played when R was approaching infinity. This

means that SH and L will be of the same order. Therefore

SH/W must linearly approach zero as L approaches zero, with

a positive slope of 1/
√

3. These two slope requirements at

L ≪W and L ≫W dictate a local maximum in the intermedi-

ate region. This occurs at R = 1.6 and SH = 0.60.

At some R value, the short sides of the rectangle are suffi-

ciently distant that in considering the variation in the B field at

the origin, one can ignore the short side’s contribution and as-

sume the system consists of four infinite wires. When R= 3.1,

SH is only 1% different from its asymptotic value. When

R = 5.9, SH differs from its asymptotic value by only 0.1%.

These two rectangle ratios are good reference points when

considering if the contributions from the ends of the coils are

sufficiently small to neglect their effects.

Previous researchers[5, 6] introduced the idea that the

length over which the field is constant within a given tolerance

can be extended by increasing the coil spacing beyond SH . As

discussed above, increasing the spacing from SH introduces a

“ripple” in By along the y axis with a local minimum at the

center of the coils (Fig. 3). We follow others[7] and quantify

the variation of the field with the “heterogeneity”, hy, given

by

hy =
By −Boy

Boy

, (1)

where By is the y-component of the magnetic field at an arbi-

trary point on one of the three Cartesian axes, and Boy is the

same at the origin.

We are interested in the length over which By stays rela-

tively constant. We thus define a length, ℓi(T ), along a given

axis i, that is the longest unbroken distance along that axis,

including the origin, over which the range of values of hy is

≤ 2T . Values of ℓy(0.01), are shown for a number of coil

spacings in Fig. 3. Note that at S = 0.59 the length includes

both positive and negative deviations of hy. We define the

FIG. 3. The values of By/Boy
and hy (see Eq. 1) along the y-axis for

a variety of coil spacings when R = 1. All spacings are in units of

W . The spacing S = 0.54 represents the Helmholtz spacing, SH . At

S = 0.64 = Sy(0.01) the coils are at the “optimum length” spacing;

the dashed lines represent the length ℓy within tolerance T = 0.01

(see text). The long ticks on the top edge represent the spacings of

the coils for each curve.
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FIG. 4. The “optimum length” spacing for the y-axis, Sy(T ) (solid

lines), and the corresponding maximum length of uniform field,

ℓy,max(T ) (dashed lines), for rectangular coils, both in units of W .

“optimum length” spacing, Si(T ), as the spacing of the coils

at which ℓi(T ) reaches its maximum, ℓi,max(T ). The opti-

mum length spacing for T = 0.01 on the y-axis, Sy(0.01),
is represented in Fig. 3 by the S = 0.64 curve, for which

ℓy(0.01) = ℓy,max = 0.6W .

Values of Sy(T ) and ℓy,max(T ) are shown for T values

of 0.001, 0.01 and 0.1 in Fig. 4. Note that the curves have

a similar shape to that for SH/W in Fig. 2. Two important

changes in Sy and ℓy,max occur as T increases. First, the max-

imum value of Sy occurs at increasing R values, from R = 1.6
(T = 0.001) to R = 2.2 (T = 0.1). Second, for T = 0.001,

ℓy,max is just over half the value of Sy for all values of R,

whereas for T = 0.1, ℓy,max exceeds Sy by 40% at all R val-

ues.

Up to this point, we have only considered the uniformity

of By along the y-axis. In charged-particle beam experiments,

however, the uniformity of By along the beam path may be

more important. Most often, this path will be coincident with

the z-axis of the rectangular coils. We investigated Si(T ) for

By on the y- and z- axes as a function of R. The results for
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FIG. 5. (a) coil spacing, Si(0.01), that provides the optimum length,

ℓi,max(0.01), along the desired axis i; (b) and (c) length over which

the field is constant to within T = 0.01 in the z- and y- directions,

respectively, for the three optimal length coil spacings shown in (a).

T = 0.01 are shown in Fig. 5.

A feature of interest in this graph is the R value at which

Sz and Sy are equal. At this point, there is a discontinuity in

the values of ℓz and ℓy for Sy and Sz spacings respectively.

These discontinuities are shown in Figs. 5(b) and (c). The dis-

continuity occurs at this point because S extends beyond the

optimum length spacing, and the terminus of the length over

which the field is within tolerance jumps from being outside

the location of the peaks in By, to being located just inside the

location of the peaks. Such a transition can be seen in Fig. 3

as S moves from S = 0.64 to S = 0.69. This transition is a

function of T . When T = 0, the crossing occurs at R = 1. It

increases roughly linearly until T = 0.03, where the crossing

happens at R = 3.5. The value of R where the crossing oc-

curs then quickly increases. At T = 0.05, the curves cross at

R = 10.5.

Fig. 5 raises other important points to consider when de-

signing rectangular coils to minimize magnetic fields in the

beamline and target regions. For fixed W , the uniform re-

gion along the z-axis can be extended arbitrarily by increas-

ing Sz linearly with L. This can become problematic, espe-

cially when R exceeds 1.9 (for the case of T = 0.01). First,

the strength of the field along the beamline decreases steadily

as Sz is increased, which for sufficiently large R may require

unacceptably high currents or power dissipation to “buck out”

the local field. Secondly, as R increases above 1.9, ℓy drops

significantly for the Sz spacing, which may lead to an unac-

ceptable reduction in the volume of uniform magnetic field in

an extended vertical target region.

While the utility of the results discussed here are generally

applicable, we now, as an example, consider a set of coils that

we have designed for use in our laboratory. They have dimen-

sions L = 1.83 m and W = 0.81 m, so SH is 0.48 m. The appa-

ratus shielded by these coils has an electron beam line on the

z-axis that extends from z=−0.62 m to z=+0.23 m, with the

target at the origin. The z-axis is oriented along Earth’s mag-

netic north-south axis and the magnetic field in this region has

a vertical component of 36 µT, requiring 22 amp-turns to zero

it out at the target center. For a nominal current of 1 A, this

corresponds to an array of wires in a square bundle ∼ 0.5 cm

on a side. Our calculations indicate this non-ideally thin set

of coils produces a field that is just 0.6% different at the cen-

ter than that predicted by our single wire calculation for an

equal number of amp-turns. In addition, a reduction of the

coil spacing of about 0.3% (∼ 2mm) is required to maintain

the Helmholtz condition.

This work was supported by the National Science Founda-

tion (PHY-1806776).

The data that support the findings of this study are available

within the article. Additionally, the data is available in tabular

form in Zenodo[8].
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